CEGEP DE SAINT-HYACINTHE Travail Pratique #2

Cégep de Saint-Hyacinthe

Département d’informatique

Algorithme et programmation (420-1MP-HY)

Travail Pratique #2

Préparé par
Martin Lalancette
bureau B-2335

DESCRIPTION

But: Utiliser les chaines de caractéres, les boucles et les fichiers de type TEXTE

Objectifs : e Elaborer les solutions via pseudo-code
e FElaborer des cas tests manuels
e Réviser les notions antérieures
e Appliquer les principes logiques algorithmiques avec une bonne
syntaxe en suivant vigoureusement les normes de programmation
e Utiliser les fonctionnalités des chaines de caractéres
e Utiliser les structures répétitives (boucles)
e Utiliser les notions de fichiers de type TEXTE
e Programmer en C# une application de type console (.NET Core) sous

Visual Studio

Durée : 10h

Pondération : sur 10

Remise : A la semaine 8.

Contenu e Remettre vos documents d’analyse et votre solution contenant les

général : deux projets dans un document .ZIP via LEA avant la date et heure
limite.

Notes e Conserver une copie de sécurité. Il est de votre responsabilité de

conserver une copie de sécurité dans I'éventualité ou la lecture des
données serait impossible. Cette copie doit étre disponible sur
demande.

Spécifications du travail

Dans ce travail pratique, il y aura deux parties a faire seul ou en équipe de deux. Pour
I’ensemble des deux parties, vous devez créer une seule solution nommée TP2.sln, et deux

projets de type console .NET Core.

420-1MP-HY Algorithme et programmation Page 1 sur 6

CEGEP DE SAINT-HYACINTHE Travail Pratique #2

Console #1: Jeu de dés — 50 %

Regles du jeu :

Deux joueurs s’affrontent dans une partie de dés

e Vous devez saisir le nom des deux adversaires et les stocker dans leur variable

respective.

Les deux joueurs brassent (I'objet Random) deux dés cinqg fois de suite. C'est celui qui a
la plus grosse somme des résultats qui gagne. En cas d’égalité au cinquieme lancer, on
brasse a nouveau les dés tant et aussi longtemps qu’il n’y a pas de gagnant.
A chaque partie, vous devez vider I'écran.
A chaque lancée de dés, vous devez afficher le numéro du tour, le résultat de chaque dé
pour chaque joueur et le cumulatif du tour. Voir écran ici-bas.
Le nombre de victoires est comptabilisé pour chaque joueur et est affiché dans la barre
de titre. Ces compteurs sont remis a zéro si les joueurs changent.
Apres une partie, un menu apparait pour guider les utilisateurs. Valider les choix.
Le résultat du dé doit étre en format « string » écrit de la facon suivante : 1/6, 2/6....
6/6. Voici un exemple d’écran a programmer :

[c] Jouer aux dés (Victoires) ==> Martin: 1VS Hugo: 0

umulatif..:

Résultat.
Cumulatif..:

3 et Hugo

articipants (défaut).
veaux joueurs.

Votre choi

Consignes :

1.

2.
3.
4

Ajouter a la solution un projet de type console (.NET Core) nommé JouerDés.
Ajouter un fichier texte (ou Word) dans ce projet et y rédiger le pseudo-code.

Utiliser la grille de tests dans LEA pour rédiger les cas de tests.

Dans le fichier Program.cs, coder la logique de votre pseudo-code en ajoutant des
commentaires (Description, Auteur, Date, etc.) et en appliquant les normes.

Effectuer les cas de test associés a la saisie des données pour s’assurer de la bonne

fonctionnalité.

420-1MP-HY Algorithme et programmation Page 2 sur 6

CEGEP DE SAINT-HYACINTHE

Travail Pratique #2

Console #2 : Utilitaire servant a justifier un texte — 50 %

La compagnie STH Imprimerie inc. requiert vos services afin de concevoir un programme qui

permet de justifier (aligner sur les marges de gauche et de droite) des textes contenus dans des

fichiers de type texte. JUSTIFIER consiste a distribuer équitablement les espaces a la fin de la

chaine de caracteres vers ceux se trouvant dans la chaine de caracteres. Exemple sur 50

colonnes :

00
00000000011111111112222222222333333333344444444445
12345678901234567890123456789012345678901234567890

resté jusqu'en 1996. Il a continué

Vous devez concevoir cet algorithme de distribution.

Au démarrage de 'application, vous devez faire apparaitre le menu suivant :

Justifier un texte

Aprés chaque opération, il y a une pause (attente d’une touche), la console se vide et le menu

apparait. Voici en détail chacune des opérations exigées :

1. Définir le nom du fichier a charger : Lorsque I'utilisateur choisit A, il faut demander
d’entrer un nom de fichier TEXTE et valider son existence (Afficher un message
d’erreur). Le nom du fichier est conservé dans une variable et afficher dans le menu. Il
servira pour les choix C et D. Exemples :

420-1MP-HY Algorithme et programmation Page 3 sur 6

CEGEP DE SAINT-HYACINTHE Travail Pratique #2

2. Définir le nombre de colonnes : Permet a 'utilisateur de définir le nombre de colonnes
a utiliser pour justifier le texte. Ce nombre doit se situer entre 50 et 120 (a valider). Ce
nombre est conservé dans une variable et affiché dans le menu. Il servira pour les choix
CetD. Exemples :

Votre choix

3. Charger et afficher le texte justifié : Cette opération consiste a ouvrir le fichier spécifié
au choix A en mode lecture et lire le contenu ligne par ligne. Pour chaque ligne, justifier
les caractéres et |'afficher a I’écran selon le nombre de colonnes spécifié au choix B.

Exemple a 50 colonnes :

% Justifier un texte

Exemple a 90 colonnes :

Les lignes de texte qui
sont plus longues que la
limite spécifiée seront
affichées telles quelles
(donc pas justifiées ni
tronquées).

Exemple a 120 colonnes :

Les lignes de textes plus
courtes que la limite
doivent étre justifiées.

420-1MP-HY Algorithme et programmation Page 4 sur 6

CEGEP DE SAINT-HYACINTHE Travail Pratique #2

4. Charger et enregistrer le texte justifié : Cette opération consiste a reproduire ce qui se
passe lors du choix C, mais d’écrire le résultat justifié dans un fichier TEXTE. Il faut

demander le nom du fichier avant. Exemple :

| Justifier un texte

mb co et
fficher le texte justif
r le justifie

ier de sortie: test.txt

0806000001111111111222222222233333333334444444444° S666666666677777777778
123456789012 3456785012 345678901 2345678901 2 34567 89% 9012345678901 234567690

anders Hejlsberg, décembre 1968, est un programmeur danois.

En 1989, i commencé 3 écrire des programmes
pour le micro-ordinateur Nascom durant sa scolarité a I1'Université
technique du Danemark d'ol il sortit non diplémé; il a en particulier écrit
un compilateur Pascal qui @ été vends sous le nom de
Blue Label Pascal compiler pour le Mascom-2. 11 1'a rapidement
réécrit pour CP/M et M5-DOS, et distribué sous le nom de Compass Pascal
puis de Poly Pascal. Aprés avoir été acquis par Borland,
i1 a ité distribué sous le nom Turbo Pascal.
te rachat par Borland de son logiciel & amené Hejlsberg & &tre
un des fondateurs de la société Borland dans laguelle il est
resté asqu’en 1996, 1 a continué
le développement du Turbo Pascal et est devenu chef de
prajet lors de 1'élaboration du langage Delphi,
successeur du Turbo pascal.
En 1906, il a quitté Borland pour rejoindre Microsoft ob il a
travaillé sur le langage Je+ et les windows Foundation Classes.
1l est le concepteur du Framework HET

11 travaille aujourd'hui chez Microsoft comme wun chef de projet
et architecte logiciel du projet C#, ainsi que du projet TypeScript

source: https://fr.wikipedia.org/wiki/anders_Hejlsberg

n1,€ol 1 100% Windows (CRLF) UTF-8

5. Quitter : Permet de quitter la console.

Consignes :

1. Ajouter a la solution un projet de type console (.NET Core) nommé JustifierTexte.
Ajouter un fichier texte (ou Word) dans ce projet et y rédiger le pseudo-code.

2
3. Utiliser la grille de tests dans LEA pour rédiger les cas de tests.
4

Dans le fichier Program.cs, coder la logique de votre pseudo-code en ajoutant des
commentaires (Description, Auteur, Date, etc.) et en appliquant les normes.

5. Concernant le nombre de colonnes inférieur (50) et supérieur (120), définir des
constantes et les utiliser.

6. Effectuer 5 cas de test pour s’assurer de la bonne fonctionnalité.

Bareme d’évaluation

Console #1 :
Console #1 :
Console #1 :
Console #2 :
Console #2 :
Console #2 :

(2 =YU T Lo oTo Yo L= IR UU TR /1.0
Elaboration des cas de tests (GrilleDeTestS.XIXS)......ccvvereieereereeeeieeeeeeeseeeeeeseenas /1.5
Programmation : Respect des normes et des fonctionnalités demandées............ /2.5
[EY=TU T Lo oTo Yo L= TR TP ORRRO /1.0
Elaboration des cas de tests (GrilleDeTests.XIXS)......cccrveuereereeeeeerieeeeeeeseeeeeseeeeas /1.5
Programmation : Respect des normes et des fonctionnalités demandées............ /2.5

(VL] =38 €01 7 1 =3 b £ X ¢
* Tout travail plagié en partie ou en totalité se verra attribuer une note totale de 0 %.

420-1MP-HY

Algorithme et programmation Page 5 sur 6

CEGEP DE SAINT-HYACINTHE Travail Pratique #2

PDEA #1: Lors d’activités d’évaluation sommative en classe ou hors classe (programmes
(incluant les commentaires), documentation, rapport de laboratoire, rapport de
stage, examen), une pénalité maximale de 10 % peut étre retranchée de la note
finale de ladite évaluation (le baréme étant de 0,5%/erreur).

PDEA #4 : Toute évaluation sommative remise apres la date d’échéance fixée se voit attribuer
la note zéro pour les étudiants de 2. a 6e session. Afin de faciliter I'accueil et
I'intégration des nouveaux étudiants de 1re session, cette regle s’appliquera de la
facon suivante : 30 % de pénalité pour une 1re offense (a condition que la remise soit
faite dans les 24 heures suivant la date de remise officielle), 100% de pénalité pour
les offenses subséquentes.

420-1MP-HY Algorithme et programmation Page 6 sur 6

