
CÉGEP DE SAINT-HYACINTHE Travail Pratique #2

420-1MP-HY Algorithme et programmation Page 1 sur 6

Algorithme et programmation (420-1MP-HY)

Travail Pratique #2

Préparé par

Martin Lalancette

 bureau B-2335

DESCRIPTION

But : Utiliser les chaines de caractères, les boucles et les fichiers de type TEXTE

Objectifs : • Élaborer les solutions via pseudo-code

• Élaborer des cas tests manuels

• Réviser les notions antérieures

• Appliquer les principes logiques algorithmiques avec une bonne
syntaxe en suivant vigoureusement les normes de programmation

• Utiliser les fonctionnalités des chaines de caractères

• Utiliser les structures répétitives (boucles)

• Utiliser les notions de fichiers de type TEXTE

• Programmer en C# une application de type console (.NET Core) sous
Visual Studio

Durée : 10 h

Pondération : sur 10

Remise : À la semaine 8.
Contenu
général :

Notes

• Remettre vos documents d’analyse et votre solution contenant les
deux projets dans un document .ZIP via LÉA avant la date et heure
limite.

• Conserver une copie de sécurité. Il est de votre responsabilité de
conserver une copie de sécurité dans l’éventualité où la lecture des
données serait impossible. Cette copie doit être disponible sur
demande.

Spécifications du travail

Dans ce travail pratique, il y aura deux parties à faire seul ou en équipe de deux. Pour

l’ensemble des deux parties, vous devez créer une seule solution nommée TP2.sln, et deux

projets de type console .NET Core.

CÉGEP DE SAINT-HYACINTHE Travail Pratique #2

420-1MP-HY Algorithme et programmation Page 2 sur 6

Console #1: Jeu de dés – 50 %

Règles du jeu :

• Deux joueurs s’affrontent dans une partie de dés

• Vous devez saisir le nom des deux adversaires et les stocker dans leur variable
respective.

• Les deux joueurs brassent (l’objet Random) deux dés cinq fois de suite. C’est celui qui a
la plus grosse somme des résultats qui gagne. En cas d’égalité au cinquième lancer, on
brasse à nouveau les dés tant et aussi longtemps qu’il n’y a pas de gagnant.

• À chaque partie, vous devez vider l’écran.

• À chaque lancée de dés, vous devez afficher le numéro du tour, le résultat de chaque dé
pour chaque joueur et le cumulatif du tour. Voir écran ici-bas.

• Le nombre de victoires est comptabilisé pour chaque joueur et est affiché dans la barre
de titre. Ces compteurs sont remis à zéro si les joueurs changent.

• Après une partie, un menu apparait pour guider les utilisateurs. Valider les choix.

• Le résultat du dé doit être en format « string » écrit de la façon suivante : 1/6, 2/6….
6/6. Voici un exemple d’écran à programmer :

Consignes :

1. Ajouter à la solution un projet de type console (.NET Core) nommé JouerDés.

2. Ajouter un fichier texte (ou Word) dans ce projet et y rédiger le pseudo-code.

3. Utiliser la grille de tests dans LÉA pour rédiger les cas de tests.

4. Dans le fichier Program.cs, coder la logique de votre pseudo-code en ajoutant des

commentaires (Description, Auteur, Date, etc.) et en appliquant les normes.

5. Effectuer les cas de test associés à la saisie des données pour s’assurer de la bonne

fonctionnalité.

CÉGEP DE SAINT-HYACINTHE Travail Pratique #2

420-1MP-HY Algorithme et programmation Page 3 sur 6

Console #2 : Utilitaire servant à justifier un texte – 50 %

La compagnie STH Imprimerie inc. requiert vos services afin de concevoir un programme qui

permet de justifier (aligner sur les marges de gauche et de droite) des textes contenus dans des

fichiers de type texte. JUSTIFIER consiste à distribuer équitablement les espaces à la fin de la

chaine de caractères vers ceux se trouvant dans la chaine de caractères. Exemple sur 50

colonnes :
--

00

00000000011111111112222222222333333333344444444445

12345678901234567890123456789012345678901234567890

--

resté jusqu'en 1996. Il a continué

resté jusqu'en 1996. Il a continué

Vous devez concevoir cet algorithme de distribution.

Au démarrage de l’application, vous devez faire apparaitre le menu suivant :

Après chaque opération, il y a une pause (attente d’une touche), la console se vide et le menu

apparait. Voici en détail chacune des opérations exigées :

1. Définir le nom du fichier à charger : Lorsque l’utilisateur choisit A, il faut demander

d’entrer un nom de fichier TEXTE et valider son existence (Afficher un message

d’erreur). Le nom du fichier est conservé dans une variable et afficher dans le menu. Il

servira pour les choix C et D. Exemples :

Distribuer

CÉGEP DE SAINT-HYACINTHE Travail Pratique #2

420-1MP-HY Algorithme et programmation Page 4 sur 6

2. Définir le nombre de colonnes : Permet à l’utilisateur de définir le nombre de colonnes

à utiliser pour justifier le texte. Ce nombre doit se situer entre 50 et 120 (à valider). Ce

nombre est conservé dans une variable et affiché dans le menu. Il servira pour les choix

C et D. Exemples :

3. Charger et afficher le texte justifié : Cette opération consiste à ouvrir le fichier spécifié

au choix A en mode lecture et lire le contenu ligne par ligne. Pour chaque ligne, justifier

les caractères et l’afficher à l’écran selon le nombre de colonnes spécifié au choix B.

Exemple à 50 colonnes :

Exemple à 90 colonnes :

Les lignes de texte qui
sont plus longues que la
limite spécifiée seront
affichées telles quelles
(donc pas justifiées ni
tronquées).

Les lignes de textes plus
courtes que la limite
doivent être justifiées.

Exemple à 120 colonnes :

CÉGEP DE SAINT-HYACINTHE Travail Pratique #2

420-1MP-HY Algorithme et programmation Page 5 sur 6

4. Charger et enregistrer le texte justifié : Cette opération consiste à reproduire ce qui se

passe lors du choix C, mais d’écrire le résultat justifié dans un fichier TEXTE. Il faut

demander le nom du fichier avant. Exemple :

5. Quitter : Permet de quitter la console.

Consignes :

1. Ajouter à la solution un projet de type console (.NET Core) nommé JustifierTexte.

2. Ajouter un fichier texte (ou Word) dans ce projet et y rédiger le pseudo-code.

3. Utiliser la grille de tests dans LÉA pour rédiger les cas de tests.

4. Dans le fichier Program.cs, coder la logique de votre pseudo-code en ajoutant des

commentaires (Description, Auteur, Date, etc.) et en appliquant les normes.

5. Concernant le nombre de colonnes inférieur (50) et supérieur (120), définir des

constantes et les utiliser.

6. Effectuer 5 cas de test pour s’assurer de la bonne fonctionnalité.

Barème d’évaluation

Console #1 : Pseudo-code ... /1.0

Console #1 : Élaboration des cas de tests (GrilleDeTests.xlxs) .. /1.5

Console #1 : Programmation : Respect des normes et des fonctionnalités demandées /2.5

Console #2 : Pseudo-code ... /1.0

Console #2 : Élaboration des cas de tests (GrilleDeTests.xlxs) .. /1.5

Console #2 : Programmation : Respect des normes et des fonctionnalités demandées /2.5

Note totale* ... /10.0

* Tout travail plagié en partie ou en totalité se verra attribuer une note totale de 0 %.

CÉGEP DE SAINT-HYACINTHE Travail Pratique #2

420-1MP-HY Algorithme et programmation Page 6 sur 6

PDEA #1: Lors d’activités d’évaluation sommative en classe ou hors classe (programmes

(incluant les commentaires), documentation, rapport de laboratoire, rapport de

stage, examen), une pénalité maximale de 10 % peut être retranchée de la note

finale de ladite évaluation (le barème étant de 0,5%/erreur).

PDEA #4 : Toute évaluation sommative remise après la date d’échéance fixée se voit attribuer
la note zéro pour les étudiants de 2e à 6e session. Afin de faciliter l’accueil et
l’intégration des nouveaux étudiants de 1re session, cette règle s’appliquera de la
façon suivante : 30 % de pénalité pour une 1re offense (à condition que la remise soit
faite dans les 24 heures suivant la date de remise officielle), 100% de pénalité pour
les offenses subséquentes.

