
Travail pratique #01

Il existe plusieurs jeux basés sur les voxels, minecraft est sans contredits le plus populaires d’entre-eux.
Au cours de la session, vous serez amenés à en créer un clone (en plus simple on s’entend !) par une série
de travaux pratiques de difficulté incrémentale et permettant de mettre en pratique les notions de POO
que nous verrons en classe. Voici le premier d’entre eux !

Le but de ce travail est de créer des classes qui vous seront utiles par la suite pour la réalisation du jeu.
Elles serviront de base pour le reste et seront dans certains cas amenées à être améliorées par la suite.

Objectifs du travail

1. Pratiquer les notions de C++ vues jusqu’à maintenant

2. Mettre en oeuvre des classes qui respectent les bases de l’encapsulation

3. Favoriser la réutilisation de code par l’héritage

4. Écrire des jeux de tests

Règles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp

2. N’oubliez pas les ”include guard”

3. Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc

4. Les règles de l’encapsulation doivent être respectées au maximum, seulement ce qui doit absolument
être public peut l’être

5. Vous devez tester chacunes de vos classes en écrivant un jeu de test qui les utilisent

6. Le code doit compiler sous visual studios 2022 (ou g++ sous linux)

7. Veuillez commenter votre code intelligemment

8. Votre code doit compiler sans erreurs pour être corrigé

Pour le moment vous devez créer et tester les classes de ce TP dans une application console.

Voici ce qui est a à implémenter :

Constantes et types de blocs

Le monde du jeu est entièrement constitué de cubes (blocs). Il va donc de soit de garder une liste des
types de blocs qui existeront. Pour l’instant nous n’en définierons que trois :

BTYPE AIR : Un bloc d’air est vu comme une absence de bloc. Tout ce qui n’est pas un bloc
physique est de l’air. Ce type de bloc est particulier parce qu’il laisse passer parfaitement la
lumière et ne cause pas de collisions.

BTYPE DIRT : Il s’agit d’un bloc de terre

BTYPE GRASS : Bloc de gazon, semblable à un simple bloc de terre, mais puisqu’il est exposé à
la lumière du gazon a poussé sur le dessus.

Veuillez définir un enum nommé BlockType qui contient ces valeurs (dans cet ordre..) dans un fichier
nommé define.h. N’oubliez pas les include guard.

Vous devez ajouter dans ce même fichier trois constantes en utilisant la directive #define du préprocesseur
nommées CHUNK SIZE X, CHUNK SIZE Y et CHUNK SIZE Z qui possèdent respectivement les valeurs
16, 128, 16.

1



Description des classes

Classe BlockInfo

Chaque type de bloc possède des caractéristiques différentes et la classe BlockInfo servira pour instancier
chaque objet représentant les différents blocs du jeu. Pour l’instant cette classe doit contenir les informa-
tions de durabilité (combien de coup sont nécessaire pour briser le bloc), son nom, et son type (un des 3
types décrit plus haut et provenant de define.h).

Votre classe BlockInfo doit posséder au minimum les méthodes publiques ayant les signatures suivantes
(attention au respect de la casse) :

Listing 1 – Méthodes de BlockInfo

BlockInfo(BlockType type , const std:: string& name);

~BlockInfo ();

BlockType GetType () const;

void SetDurability(int durability);

int GetDurability () const;

void Show() const;

La méthode Show est responsable d’afficher dans la console le type, le nom et la durabilité du bloc. Rien
ne vous empêche de vous créer une ou des méthodes privées qui vous aideront, surtout si ça vous évite
de dupliquer du code.

Classe BlockArray3d

Puisque le jeu se déroule en 3 dimensions, nous aurons régulièrement à manipuler des regroupement de
bloc en 3d. La classe BlockArray3d représente un tableau en 3 dimensions que vous devez créer sur mesure.
À la construction d’un objet de type BlockArray3d, le programmeur passe la taille en x (largeur), en y
(hauteur) et en z (profondeur) du tableau 3d. Dans le constructeur, l’objet doit allouer dynamiquement
l’espace mémoire nécessaire (en utilisant new pour allouer x * y * z éléments de type BlockType). Il faut
libérer la mémoire à la destruction de l’objet.

Vous devez créer un constructeur qui accepte en paramêtre trois entiers de type int nommés dans l’ordre
x, y et z pour initialiser la taille du tableau 3d. Le constructeur est responsable d’allouer la mémoire
nécessaire qui devra être conservée à l’aide d’un pointeur de type BlockType. Une fois la mémoire allouée,
le constructeur initialise le tableau 3d avec des BTYPE AIR.

Cette classe devra comporter les méthodes publiques suivantes :

Listing 2 – Méthodes qui doivent être présentes dans BlockArray3d

void Set(int x, int y, int z, BlockType type);

BlockType Get(int x, int y, int z) const;

void Reset(BlockType type);

La méthode Set permet d’assigner un type (BlocType) à n’importe quelle case du tableau 3d en spécifiant
la position à modifier. La méthode Get va chercher le BlocType associé à la position passée en paramètre
et la méthode Reset initialise le tableau 3d en entier avec la valeur passée en paramètre.

Puisque vous avez alloué un tableau interne à une dimension avec new, il est nécessaire de calculer vous-
même la position linéaire dans ce tableau selon la position 3d qui est recues. Vous pouvez utiliser la
formule suivante :

Listing 3 – Accès à une position dans le tableau interne

// En supposant que m_x , m_y et m_z soient des variables de classe qui contiennent la taille du tableau:

// m_blocks est le tableau de taille m_x * m_y * m_z alloué dynamiquement dans le constructeur

return m_blocks[x + (z * m_x) + (y * m_z * m_x)];

N’oubliez pas de faire un constructeur de copie pour cet objet pour garantir que s’il se fait copier, le
contenu interne (surtout le tableau dynamique) se fera copier aussi.

2



Classe Chunk

Le monde dans lequel le joueur évolue dans un jeu comme minecraft est infini. Rien n’est réellement
infini, mais du moins il donne l’impression que c’est le cas. Le truc utilisé est de charger seulement une
partie du monde en mémoire à la fois, et de s’assurer que chaque fois que le joueur se déplace seulement
la partie visible du monde qui l’entoure est chargé. Pour y arriver, il faut diviser le monde en morceau,
qu’il est possible de charger en mémoire et de les décharger sur demande. Nous appelerons ce ”morceau
de monde” un Chunk. Un chunk est un regroupement de blocs, dont les dimensions ont été définies dans
le fichier define.h au début de ce TP. On peut dire que un Chunk est un BlockArray3d, mais avec plus
de fonctionnalités.

Vous devez créer votre classe Chunk en la faisait dériver (hériter) de la classe BlockArray3d. Nous n’aurons
pas beaucoup de nouvelles fonctionnalités à lui ajouter en ce moment, mais ce sera fait au cours des
prochains TPs.

Listing 4 – Méthodes à implémenter dans la classe Chunk

Chunk();

~Chunk();

void RemoveBlock(int x, int y, int z);

void SetBlock(int x, int y, int z, BlockType type);

BlockType GetBlock(int x, int y, int z) const;

Le constructeur de Chunk est responsable d’appeler le constructeur de la classe parent et de lui fournir
les bonnes dimensions. Les dimensions à fournir sont celles de define.h (les 3 CHUNK SIZE *).

Les méthodes RemoveBlock, SetBlock et GetBlock acceptent une position en 3 dimensions. La méthode
RemoveBlock remplace le bloc à la position donnée par un bloc de type BTYPE AIR. Ces trois méthodes
doivent appeler les méthodes de la classe parent (BlockArray3d) que vous avez créée précédemment.

Tests

Vous devez créer un ensemble de tests (dans main.cpp) qui vérifieront le bon fonctionnement de vos
classes. Veuillez laisser les test pour la soumission de votre travail.

Remise

A remettre sur Vortex :

1. Un fichier texte (.txt) contenant le hash sha1 (exemple : 8fea0e32a53c59eac95c157fa060e112cf88b7a0)
du dernier commit que vous voulez que je corrige. Assurez-vous d’avoir fait un push sur le serveur
pour que je puisse voir votre dernière version. Ne pas remettre votre projet directement sur
vortex !

3


