
Travail pratique #02

Ce travail doit être réalisé en utilisant comme point de départ le petit engin de jeu présenté en classe.
L’engin est basé sur OpenGL, et utilise les librairies suivantes :

SFML Librairie permettant de créer le contexte OpenGL (la fenêtre du jeu), à gérer les entrées
clavier et les mouvenents/clicks de souris, le temps, etc. Une de ses grande qualité est d’être multi-
plateforme, ce qui nous assurera que notre jeu peut fonctionner autant sur Windows que sur Linux
ou Mac.

Devil Cette librairie est utilisée pour le chargement des images qui seront utilisées comme textures
dans le jeu. Cette librairie est utilisée dans l’industrie du jeu vidéo parce qu’elle est flexible et
supporte la majorité des formats d’images. Elle est elle aussi portable sur plusieurs OS et consoles.

La partie de la création du contexte opengl, du rendu graphique, de la gestion du clavier et de la souris
(le game loop) est définit dans la classe abstraite OpenglContext. Notre jeu, qui sera contenu dans la
classe Engine héritera de cette classe et devra s’assurer d’implémenter correctement chacune des méthodes
virtuelles de la classe de base. La classe OpenglContext vous est fournie, et la classe Engine avec une
implémentation minimale l’est aussi. Vous ne devez pas modifier la classe OpenglContext.

Par défaut, du code est ajouté pour gérer trois raccourcis claviers qui sont soit utiles (F10, ESC), ou qui
permettront de diagnostiquer les problèmes (Y) plus facilement. La touche ESC ferme le jeu, la touche
F10 change l’état plein-écran de la fenêtre de jeu et finalement la touche Y permet de passer en mode
d’affichage en fil (wireframe) pour mieux voir la géométrie. En aucun temps ces raccourcis et le code qui
leur permet de fonctionner ne doivent être enlevés du jeu.

Le jeu final sera en mode singleplayer, mais dans notre design nous devons garder en tête qu’il pourrait
éventuellement devenir multijoueur, et que dans ce cas il devra être le plus simple possible de le faire
sans changer toute la structure de celui-ci.

Objectifs du travail

1. Utiliser le polymorphisme

2. Utilisation de primitives mathématiques (vecteur, matrice)

3. Se famialiariser avec les transformation et le système de coordonnées de OpenGL

4. Implémenter une caméra de type FPS

5. Utilisation d’un outil de gestion de code source (git)

Règles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp

2. N’oubliez pas les ”include guard”

3. Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc

4. Les règles de l’encapsulation doivent être respectées au maximum, seulement ce qui doit absolument
être public peut l’être

5. Le code doit compiler sous visual studios 2022 (ou g++ sous linux)

6. Veuillez commenter votre code intelligemment

7. Il est primordial de soumettre votre code régulièrement sur git, et cet aspect sera
évalué pour ce travail ainsi que les subséquents

8. Votre code doit compiler sans erreurs pour être corrigé

1

Avant de commencer...

Il est fortement recommandé que vous utilisiez le code de base fourni avec ce travail. C’est le dernier
travail pour lequel je fournirai le code de base.

N’oubliez pas de renommer le projet de base pour qu’il porte le nom de votre jeu. Aucunes
traces du nom actuel ne doit subsister (noms de projet, fichiers, répertoires, etc).

Classes fournies

OpenglContext

Classe de base qui sert à initialiser le contexte opengl et à tout ce qui concerne l’interraction avec
l’utilisateur (capturer les évènements de souris/clavier, taille de la fenêtre de jeu, affichage plein écran ou
en fenêtre, cacher ou afficher le curseur, etc).

Engine

Cette classe hérite de OpenglContext et contiendra notre logique de jeu. Elle redéfinie les méthodes
virtuelles pures de la classe OpenglContext pour contrôler le jeu selon ce que le joueur fait. Lorsque le
joueur appuie sur une touche du clavier, une méthode Key* se fait appeler, et lorsque le joueur utilise la
souris, une des méthodes Mouse* se fait appeler. La méthode Render se fait appeler à intervalle régulier
(60 fois par secondes à 60FPS) et c’est dans cette méthode que vous mettrez le code qui affichera le
contenu du jeu, gèrera les déplacements, etc.

Vector3

Class représentation un vecteur mathématique, sert pour garder une position, un déplacement ou un axe.

Matrix4

Matrice carrée de 4x4, utilisée principalement pour les transformation (translation, rotation, scale) des
divers éléments du jeu (le monde, la caméra, etc).

Transformation

C’est cette classe qui sera utilisée pour appliquer des transformation sur la matrice courante. Cette classe
contient une pile (stack) de Matrice, et les transformations se font toujours sur la matrice sur le haut de
la pile. Il est possible de ”sauvegarder” la matrice courante en faisant un push et de la restaurer en faisait

2

un pop. Finalement il y a la méthode Use pour appliquer la transformation dans opengl pour qu’elle serve
pour transformer les vertex qui seront affichés par la suite.

Texture

Sert à charger une image en mémoire vidéo pour qu’elle puisse être utilisée comme texture.

BlockInfo, BlockArray3d, Chunk

Classes demandées dans le travail précédent

Un premier cube !

La base de jeu qui est fournie avec ce TP possède déjà un plancher de 200x200 unités de dimension, et
situé à la position -2 sur l’axe des Y. Vous devez créer et afficher un cube qui :

1. Est centré à l’origine

2. Est de dimension 1 unité x 1 unité x 1 unité

3. Possède une texture différente que celle du plancher. Le choix de la texture vous appartient (la
texture doit être mise dans le même répertoire que celle du plancher)

4. Doit tourner sur lui-même, sur au moins 2 axes.

Classe Player

La classe Player sert à représenter le joueur du jeu, c’est à dire sa position et son orientation. La position
du joueur est un objet de type Vector3f, tandis son orientation est définie par sa rotation par rapport aux
axes X et Y. Cette classe fait donc office de caméra (dans ce tp) et ses fonctionnalités seront étendues
ultérieurement pour gérer plus de choses (collisions, etc).

Dans notre jeu (comme c’est le cas pour minecraft aussi) chaque cube qui compose le monde est de 1
mètre x 1 mètre x 1 mètre. Pour se faciliter la tâche, nous assumerons que 1 mètre est équivalent à une
unité (1.f) dans opengl. Le joueur mesure environ 1.7 mètre de haut et est moins large que 1 mètre (! !).
Ces détails seront importants lorsque nous auront à gérer les collisions dans un prochain travail.

3

La vue du joueur (la caméra) est de type first-person comme c’est le cas des jeux FPS (first-person
shooter). La classe Player est responsable de gérer le déplacement et la rotation du joueur, et d’appliquer
ces transformations dans opengl.

Vous devez implémenter les méthodes publiques suivantes dans la classe Player (voir description ci-
dessous) :

Listing 1 – Méthodes de Player

Player(const Vector3f& position , float rotX = 0, float rotY = 0);

void TurnLeftRight(float value);

void TurnTopBottom(float value);

void Move(bool front , bool back , bool left , bool right , float elapsedTime);

void ApplyTransformation(Transformation& transformation) const;

NOTE : Le code de ces méthode (et surtout les formules) est fourni à l’adresse suivante. Il y
aura quelques modifications mineures à faire pour l’adapter à notre projet et c’est pourquoi
vous devez comprendre la logique derrière celles-ci : http://www.swiftless.com/tutorials/
opengl/camera2.html

Vous devrez créer un objet de type Player dans la classe Engine (m player), et appeler les méthodes ci-haut
en réponse aux évènements clavier et souris. La méthode TurnLeftRight permet de gérer le déplacement
horizontal de la souris (rotation par rapport à l’axe Y dans opengl) et la méthode TurnTopBottom
permet de gérer le déplacement vertical de la souris (rotation par rapport à l’axe des X dans opengl).
Pour ces deux méthodes le signe de la valeur passée en paramètre indique la direction du mouvement
(si négatif c’est un mouvement vers la gauche ou vers le bas, sinon c’est un mouvement vers la droite
ou vers le haut). Vous aurez besoin d’utiliser la méthode MakeRelativeToCenter définie dans la classe de
base OpenglContext pour ajuster la position de la souris par rapport à la position du centre de l’écran.
Après chaque lecture de position, il sera nécessaire de recentrer la souris (CenterMouse). N’oubliez pas
de restreindre l’angle de la caméra vers le haut et vers le bas pour éviter les backflip et les frontflip.

La méthode Move sert à déplacer le joueur, et le déplacement doit se faire selon son orientation courante.
Les quatre premiers paramètres indiquent dans quel sens le déplacement doit se faire. Il est possible qu’un
déplacement survienne dans plus d’une direction à la fois, si le joueur appuie sur plus d’une touche de
direction en même temps. Il est évident que les touches de direction opposées (front et back, left et right)
s’annullent si elles sont appuyées simultanément. Le paramètre elapsedTime sert à ajuster le mouvement
selon le temps depuis le dernier appel.

Suggestion pour gérer le mouvement : la meilleure façon de faire est de vous garder 4 variables de
type bool dans votre classe Engine (supposons m keyW, m keyA, m keyS, m keyD) qui sont initialement
initialisées à false, et qui serviront à garder l’état enfoncé ou non de chacune des touches de direction
WASD. Dans la méthode KeyPressEvent de la classe Engine vous changez l’état de ces variables à true
lorsqu’elles sont appuyées, et vous changez leur état à false lorsque les touches sont relachées dans la
méthode KeyReleaseEvent. Il vous suffira d’appeler m player.Move(m keyW, m keyS, m keyA, m keyD,
elapsedTime) au début de la méthode Render de la classe Engine pour que le mouvement se fasse cor-
rectement et qu’il tienne compte du elapsedTime reçu en paramètre par Render.

Finalement, la méthode ApplyTransformation sert à appliquer les transformation de rotation et de
translation avec opengl. Vous devez appliquer vos transformation de rotation et de déplacement (basé
sur la position du joueur) sur l’objet transformation reçu en référence. Assurez-vous que vous appelez la
méthode ApplyTransformation dans la méthode Render de votre classe Engine juste après le LoadIdentity
pour qu’elle soit effective. Il y a un ordre à respecter lorsque vous appliquez les transformations, et elles
doivent être inversées :

Listing 2 – Code de la méthode ApplyTransformation

transformation.ApplyRotation(-m_rotX , 1.f, 0, 0);

transformation.ApplyRotation(-m_rotY , 0, 1.f, 0);

transformation.ApplyTranslation(-m_position);

4

http://www.swiftless.com/tutorials/opengl/camera2.html
http://www.swiftless.com/tutorials/opengl/camera2.html

Remise

A remettre sur Vortex :

1. Un fichier texte (.txt) contenant le hash sha1 (exemple : 8fea0e32a53c59eac95c157fa060e112cf88b7a0)
du dernier commit que vous voulez que je corrige. Assurez-vous d’avoir fait un push sur le serveur
pour que je puisse voir votre dernière version. Ne pas remettre votre projet directement sur
vortex !

5

