Travail pratique #03

En utilisant votre tp02 comme point de départ, veuillez effectuer les modifications décrites dans ce
document.

Objectifs du travail

—_

Utiliser les templates pour rendre du code générique
Allocation de mémoire, utilisation de pointeurs
Génération dynamique de mesh

Approfondir les notions d’OpenGL

GU N

Utilisation d’un outil de gestion de code source (git)

Regles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp
. N’oubliez pas les ”include guard”

. Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc

=~ W N

. Les regles de ’encapsulation doivent étre respectées au maximum, seulement ce qui doit absolument
étre public peut 'étre

5. Le code doit compiler sous visual studios 2022 (ou g++ sous linux)

6. Veuillez commenter votre code intelligemment

7. I1 est primordial de soumettre votre code régulierement sur git, et cet aspect sera
évalué pour ce travail ainsi que les subséquents

8. Votre code doit compiler sans erreurs pour étre corrigé

Avant de commencer...

Un peu de cleanup

Enlever le cube qui tourne, nous n’en aurons plus besoin.

Type de BlockType

Par soucis de simplicité nous avions déclaré BlockType en tant qu’enum dans define.h. En C++, un enum
est presque équivalent au type int, ce qui implique que chaque fois que nous stockons un type de block
(ilyenal6 ™16 * 128 dans chaque chunk...) 4 octets en mémoire sont réservés. Nous allons voir que la
mémoire sera de plus en plus limité & mesure que nous avancgons dans le projet, une modification s’'impose
donc.

Si on part du principe que nous aurons jamais plus de 256 types de blocs différents, il est plus judicieux
que le type de BlockType soit plutot un uint8_t. Veuillez apporter la modification suivante dans votre
fichier define.h :

Listing 1 — BlockType

typedef uint8_t BlockType;
enum BLOCK_TYPE {BTYPE_AIR, BTYPE_DIRT, BTYPE_GRASS};




Etre ou ne pas étre un BlockArray3d ?

Alors qu’il pouvait sembler étre une bonne idée dans le précédent TP de faire hériter la classe Chunk
de la classe BlockArray3d, il s’avere que cela nous limitera en plus de compliquer inutilement l'interface
du Chunk. Vous devez donc enlever I’héritage, un Chunk ne sera plus un BlockArray3d. Par contre, un
Chunk devra contenir un BlockArray3d comme membre privé.

Plutot que Chunk hérite de BlockArray3d, il devra contenir un membre de ce type :

BlockArray3d m_blocks;

GL_CULL_FACE

Veuillez ajouter la ligne de code suivante dans la méthode Init de la classe Engine. Cela permettra
d’améliorer les performance en disant & OpenGL de ne pas dessiner les faces de polygones qui sont dos a
nous. Vous devez bien entendu toujours dessiner vos quads en sens anti-horaire (counter-clockwise) pour
que cette fonctionnalité fasse ce que vous désirez.

glEnable (GL_CULL_FACE);

Lorsque vous faites des tests, il peut étre utile de commenter cette ligne pour éviter que opengl cache
des choses si vous faites une erreur dans le sens que vous utilisez. N’oubliez pas de le décommenter pour
avoir les meilleures performances (et avant de la remise de ce travail).

GLEW

Selon le site officiel de la librairie GLEW :

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform open-source C/C++ extension
loading library. GLEW provides efficient run-time mechanisms for determining which OpenGL extensions
are supported on the target platform. OpenGL core and extension functionality is exposed in a single header
file. GLEW has been tested on a variety of operating systems, including Windows, Linuz, Mac OS X,
FreeBSD, Iriz, and Solaris.

Nous devons installer cette librairie pour utiliser les fonctionnalités plus avancées et plus récentes de
OpenGL dont nous aurons besoin dans ce TP (pour les VBOs... les détails sont donnés plus bas). Veuillez
ajouter GLEW a votre projet :

1. Veuillez télécharger le fichier glew-1.7.0-win32.zip & partir de vortex ou du site officiel de GLEW



N

2. A partir du contenu du fichier ZIP :
(
(

(c) Copier le répertoire include du fichier zip dans le répertoire de glew

a) Copier le fichier bin/glew32.dll du fichier zip dans votre répertoire Debug

)
b) Créer un répertoire pour GLEW dans votre répertoire external (external/glew170)
)

(d) Copier le répertoire lib du fichier zip dans le répertoire de glew

3. Dans Visual Studio, allez dans les propriétés de votre projet (right-click sur le nom du projet dans
lexplorateur de solution, ensuite click sur propriétés) et :

(a) Ajouter external/glew170/include dans "Répertoires VC++ > Répertoires Include”
(b) Ajouter external/glew170/lib dans ”Répertoires VC++ > Répertoires de bibliotheques”
(c) Ajouter glew32.lib dans "Editeur de liens > entrée > Dépendances supplémentaires

4. Ajouter la ligne suivante au tout début du fichier define.h (trés important de le mettre avant
I'include de SFML...)

Listing 4 — Include de GLEW dans define.h

#include <GL/glew.h>

5. Ajouter le code suivant pour initialiser GLEW, au tout début de votre méthode Init de la classe
Engine :

Listing 5 — Initialisation de GLEW

GLenum glewErr = glewInit();

if (glewErr != GLEW_0K)

{
std::cerr << "ERREUR GLEW: " << glewGetErrorString(glewErr) << std::endl;
abort () ;

}

6. Voila! Si vous venez qu’a avoir besoin d’ajouter une autre librairie & votre projet, la procédure
ci-haut restera la méme. A partir de maintenant nous pouvons appeler n’importe quelle fonction de
OpenGL, méme celles de la version 4.* (4 condition d’avoir une carte graphique qui le supporte).

Classe Array3d

Vous devez rendre la classe BlockArray3d générique pour qu’elle puisse contenir n’importe quel type de
donnée, et pas juste des BlockType. Vous devez la renommer Array3d, et utiliser les templates.

N’oubliez pas de renommer le fichier blockarray3d.h vers array3d.h et vous pouvez effacer le fichier
blockarray3d.cpp (en passant par git...) puisqu’il ne sera plus utile.

La classe Array3d doit étre complétement générique et ne contenir aucuns types spécifiques (tel que
BlockType). Une fois cette partie faite, modifiez le reste du code pour qu'il utilise maintenant votre
nouvelle classe template (dans chunk.h et chunk.cpp)

Classe Array2d

Meéme chose que pour la section précédente, mais cette fois pour un array a deux dimensions.

Affichage des chunks

Le but de cette section est de faire afficher un chunk a ’écran, ou plutot tout les blocs qui sont contenus
dans un chunk. Nous utiliserons une méthode différente que celle utilisée pour afficher le cube qui tourne
du travail précédent.



ABB ABB A1 1
CDD (oD (> [

Mode direct vs les VBOs

La technique utilisée dans le travail précédent est appelée "mode direct” et consiste a faire des appels
de fonctions (les gl*) pour spécifier chacuns des vertex, couleur, coordonnées de textures, etc qui seront
envoyés a la carte graphique. Bien que simple, cette technique n’est pas envisageable dans un jeu tel que
le notre, surtout pour des raisons de performance. Les multiples appels de fonctions taxent le processeur
et ralentissent la vitesse a laquelle notre géométrie est envoyée vers le GPU.

De plus, le mode direct a été deprecated depuis OpenGL version 3.0, et est completement disparu depuis
OpenGL 3.1. La nouvelle technique (nouvelle... existe depuis OpenGL 1.x quand méme) consiste & utiliser
des Vertex Buffer Objects (VBO) pour y mettre toutes les informations sur nos cubes (position du vertex,
intensité de lumiere, coordonnée de texture, etc) pour ensuite envoyer ces informations a la carte graphique
toutes d’un coup. Les VBOs sont des espaces mémoires directement sur la carte vidéo (c’est possible de
le spécifier autrement...) et la performance est optimale.

C’est un peu plus complexe, mais tellement plus flexible. Nous aurons recours a des shaders pour afficher
le contenu de chaque VBO.

Vocabulaire :

Shader Programme qui peut étre exécuté directement par le GPU d’une carte graphique. Comme
dans le cas d’'un programme conventionnel, un shader est composé d’un code source, qui doit étre
compilé avant de pouvoir étre exécuter par le GPU. La compilation d’un shader se fait a partir de
OpenGlL, et c’est le driver de la carte vidéo qui le compile. La ressemblance avec un programme
conventionnel s’arréte la. Nous utiliserons les shaders GLSL dont la syntaxe ressemble beaucoup au
C++ (avec beaucoup moins de fonctionnalités). Il est possible d’utiliser les shaders pour faire toute
sorte d’effets. Il est possible d’activer un shader uniquement pour une partie du rendu graphique
(dans notre cas pour les chunks seulement). Nous devons toujours utiliser deux shaders a la fois,
un fragment shader (parfois appelé pixel shader) et un vertex shader. Voir les liens pour plus de
détails.

Mesh Un mesh est un ensemble de vertex qui représente un objet 3D. Chacun des chunks de notre
jeu aura son propre mesh. Le mesh devra étre regénéré chaque fois qu’on modifie un chunk (ajout
d’un block, destruction d’un block, changement de la luminosité, etc). C’est ce mesh qui sera stocké
dans un VBO et envoyé directement a la carte graphique.

Code fourni

Sur vortex vous trouverez ces fichiers a ajouter & votre solution : shader.{h,cpp}, vertexbuffer.{h,cpp} et
tool.{h,cpp}.



N

La classe Shader sert a charger le code source d’un shader a partir du disque dur, a le compiler et
a pouvoir ['utiliser pour le rendu de nos chunks. La classe VertexrBuffer est un objet qui contiendra
le mesh de chacun des chunk (besoin de un dans chacun des Chunk). Le code qui gere les VBOs est
dans cette classe. SVP prendre le temps de lire attentivement ce code et a fouiller dans la
documentation de OpenGL pour apprendre comment il fonctionne.

Vous avez aussi de fourni les deux shader nécessaires (le fragment shader et le vertex shader, shader01.frag
et shader01.vert respectivement) que vous devez mettre dans le répertoire media/shader de votre projet.

Initialisation des shaders

L’étape du chargement, compilation et utilisation des shaders doit se faire dans la classe Engine, en
utilisant un objet de type Shader défini dans shader.h.

Avant toute chose, n’oubliez pas d’ajouter un objet de type Shader dans la classe Engine.

Ensuite ajoutez un define dans le fichier define.h, un peu comme nous avions fait pour les textures :

Listing 6 — Chemin vers les shaders

#define SHADER_PATH "../mcclone/media/shaders/"

Dans la méthode LoadResource de votre classe Engine, vous devez maintenant charger les shaders en
utilisant ce code :

Listing 7 — Initialisation des shaders

std::cout << "Loading and compiling shaders..." << std::endl;
if (!m_shader01.Load (SHADER_PATH "shaderOi.vert", SHADER_PATH "shaderO1.frag", true))
{

std::cout << "Failed to load shader" << std::endl;

exit (1);

Changements dans la classe Chunk

Vous devez ajouter un objet de type VertexBuffer dans la classe Chunk.

Veuillez ajouter au minimum les méthodes suivantes dans cette classe :

Listing 8 — Méthodes a ajouter dans la classe Chunk

void Update();
void Render () const;
bool IsDirty() const;

La méthode Update sert a construire le mesh représentant les blocks du chunk. Cette méthode parcours
tout les blocs du chunk, et pour chacun des blocs rencontrés qui ne sont pas des blocs d’air (BTYPE_AIR)
vous devez ajouter les informations a propos des vertex qui le compose. Dans la méthode Update, le mesh
doit étre regénéré seulement si le contenu du chunk a changé depuis la derniére fois qu’il a été généré.
Pour se faire, vous aurez & maintenir un booléen qui indique si un bloc a été enlevé, ajouté, etc (en le
mettant & true dans les méthodes RemoveBlock et SetBlock) et & false une fois le mesh généré. Pour le
moment on ne se préoccupe pas du type de bloc, et n’importe quelle texture peut étre utilisée.

La méthode Render demande a la carte graphique d’afficher le mesh du chunk, en appelant simplement
la méthode Render du VertexBuffer contenu dans le chunk.

La méthode IsDirty retourne un booléen qui permet de savoir si le contenu du chunk a changé depuis la
derniere fois que le mesh du chunk a été généré.

Pour avoir un chunk qui s’affiche comme dans la copie d’écran présentée dans ce document, veuillez
ajouter le code suivant dans le constructeur de la classe Chunk :



Listing 9 — Chunk de test

m_blocks.Reset (BTYPE_AIR);

for(int x = 0; x < CHUNK_SIZE_X; ++x)

for(int z = 0; z < CHUNK_SIZE_Z; ++z)

{

for(int y = 0; y < 32; ++y)
{

if(x % 2 ==0 &k y % 2 ==10 & z % 2 == 0)
SetBlock(x, y, z, BTYPE_DIRT);

Je vous fournis le code de la méthode Update ci-dessous, qu’il vous restera a compléter pour afficher les
autres faces des blocs :

Listing 10 — Exemple de code

void Chunk::Update ()
{

// Update mesh
if (m_isDirty)

{
int maxVertexCount = (CHUNK_SIZE_X * CHUNK_SIZE_Y * CHUNK_SIZE_Z) * (6 * 4);
VertexBuffer::VertexData* vd = new VertexBuffer::VertexData[maxVertexCount];
int count = 0;
for(int x = 0; x < CHUNK_SIZE_X; ++x)
{
for(int z = 0; z < CHUNK_SIZE_Z; ++z)
for(int y = 0; y < CHUNK_SIZE_Y; ++y)
{
if (count > USHRT_MAX)
break;
BlockType bt = GetBlock(x, y, z);
if (bt != BTYPE_AIR)
{
AddBlockToMesh(vd, count, bt, x, y, z);
¥
¥
¥
if (count > USHRT_MAX)
count = USHRT_MAX;
std::cout << "[Chunk::Update] Chunk data truncaned, too much vertices to have a 16bit index" << std::endl;
}
m_vertexBuffer.SetMeshData(vd, count);
delete [] vd;
¥
m_isDirty = false;

void Chunk::AddBlockToMesh(VertexBuffer::VertexData* vd, int& count, BlockType bt, int x, int y, int z)

{

// front

vd[count++] = VertexBuffer::VertexData(x - .5f, y - .5f, z + .5f, 1.f, 1.f, 1.f, 0.f, 0.f);
vd[count++] = VertexBuffer::VertexData(x + .5f, y - .5f, z + .5f, 1.f, 1.f, 1.f, 1.f, 0.f);
vd[count++] = VertexBuffer::VertexData(x + .5f, y + .5f, z + .5f, 1.f, 1.f, 1.f, 1.f, 1.£f);
vd[count++] = VertexBuffer::VertexData(x - .5f, y + .5f, z + .5f, 1.f, 1.f, 1.f, 0.f, 1.£f);

// Continuer le code pour afficher les autres faces du cube...

Affichage!

Pour les besoins de ce TP, vous devez créer un seul objet de type Chunk dans votre classe Engine et vous
occuper de générer son mesh, et de le faire afficher :

Listing 11 — Code a ajouter dans la méthode Render de la classe Engine

if (m_testChunk.IsDirty())
m_testChunk.Update () ;

m_shader01.Use();
m_testChunk.Render ();
Shader::Disable();




Tests

Aucuns tests unitaires ne sont & réaliser pour ce travail, mais vous devez vous assurer que votre jeu
respecte au minimum ce qui est demandé dans cet énoncé.

Points bonus

Impressionnez-moi! Des points bonus seront accordés pour les extra de votre cru que vous rajouterez a
ce TP. Veuillez décrire dans le fichier texte de la remise les extras que vous avez fait et que vous voulez
que je considere pour les points bonus. Rendu a ce stade du projet, et ce jusqu’a la fin, vous étes
encouragés a personnaliser votre jeu en y ajoutant votre touche personnelle.

Références

Vertex Buffer Object (VBO)

http://en.wikipedia.org/wiki/Vertex_Buffer_Object
http://www.opengl.org/wiki/Vertex_Buffer_Object
http://www.opengl.org/wiki/Vertex_Specification_Best_Practices

Shader (GLSL)

http://en.wikipedia.org/wiki/GLSL
http://nehe.gamedev.net/article/glsl_an_introduction/25007/

Remise

A remettre sur Vortex :
1. Un fichier texte (.txt) contenant le hash shal (exemple : 8fea0e32a53c59eac95c157£fa060e112c£88b7a0)
du dernier commit que vous voulez que je corrige. Assurez-vous d’avoir fait un push sur le serveur
pour que je puisse voir votre derniere version. Ne pas remettre votre projet directement sur
vortex !


http://en.wikipedia.org/wiki/Vertex_Buffer_Object
http://www.opengl.org/wiki/Vertex_Buffer_Object
http://www.opengl.org/wiki/Vertex_Specification_Best_Practices
http://en.wikipedia.org/wiki/GLSL
http://nehe.gamedev.net/article/glsl_an_introduction/25007/

