
Travail pratique #05

En utilisant votre tp04 comme point de départ, veuillez effectuer les modifications décrites dans ce
document.

C’est le dernier travail de la session et au terme de celui-ci votre jeu aura atteint l’objectif que nous nous
étions fixé au début de la session qui était de créer un clone jouable inspiré de minecraft.

Objectifs du travail

1. Ajout, suppression et mise à jour de structures de données complexes

2. Génération de données en utilisant une fonction pseudo-aléatoire basée sur le bruit de perlin

3. Mettre en pratique les notions vues en classe pour déterminer de façon autonome le meilleur moyen
de solutionner les problèmes demandés

Règles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp

2. N’oubliez pas les ”include guard”

3. Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc

4. Les règles de l’encapsulation doivent être respectées au maximum, seulement ce qui doit absolument
être public peut l’être

5. Le code doit compiler sous visual studios 2022 (ou g++ sous linux)

6. Veuillez commenter votre code intelligemment

7. Il est primordial de soumettre votre code régulièrement sur git, et cet aspect sera
évalué pour ce travail ainsi que les subséquents

8. Votre code doit compiler sans erreurs pour être corrigé

Destruction et création de blocs

Une des principales forces de minecraft est qu’il est possible de transformer le monde à sa guise, en
enlevant et en ajoutant des blocs. Ce type de jeu est appelé un jeu ’sandbox’ et apporte un très haut de
rejouabilité et de flexibilité.

Le bouton gauche de la souris sert à détruire le bloc qui est devant le joueur (pointé par le crosshair).
La destruction d’un bloc implique de pouvoir déterminer quel bloc est pointé par le joueur, et ensuite
selon sa durabilité de éventuellement le détruire. Vous pouvez si vous le désirez ne pas tenir compte de la
durabilité des blocs et assumer qu’ils se détruisent en un seul coup (points bonus pour ceux qui tiendront
compte de la durabilité, c’est à dire qu’il faut maintenir le bouton gauche de la souris enfoncé sur un bloc
pour le détruire jusqu’à ce que sa durabilité tombe égale à zéro). Une fois le bloc détruit, il disparait et
le mesh du chunk est regénéré.

Le code permettant de déterminer quel bloc est pointé par le crosshair est fourni avec ce TP dans le
fichier GetBlocAtCursor.txt sur vortex.

Deux méthodes nécessaires par ce code (EqualWithEpsilon et InRangeWithEpsilon) sont fournies dans
le fichier Epsilon.txt. Elles permettent de faire des comparaisons de nombre en virgule flottante en tenant
compte d’une marge d’erreur (l’epsilon).

Faites du bruit !

Pour générer le monde virtuel vous aurez besoin d’utiliser une fonction pseudo-aléatoire. Une bonne
fonction pseudo-aléatoire doit pouvoir fournir les caractéristiques suivantes :

1



1. Il doit être possible d’initialiser la fonction de génération de nombre aléatoire avec une valeur
initiale (seed), un peu comme si on ”brassait les cartes”.

2. Elle doit être déterministe, c’est à dire que pour un seed donné, la séquence de valeur retournée par
la fonction aléatoire doit toujours être la même. Cela permettra qu’un chunk puisse être regénéré
au besoin et être identique chaque fois que le joueur revient au même endroit (en utilisant par
exemple la position du chunk dans le monde comme seed).

3. Se rapprocher le plus possible des caractéristique du vrai hasard. Les valeurs retournées doivent
être uniformément distribuées sur leur domaine de valeur.

Il existe plusieurs fonctions pseudo-aléatoire qui respectent ces critères, la plupart sont basées sur des
opérations mathémathiques relativement simples. Il existe par exemple la classe Random en C# ou la
fonction rand() en C ou C++. Malheureusement une fonction de ce type n’est pas idéale pour générer
un monde de jeu avec un terrain possédant des montagnes, collines, vallées, rivières, etc. Une fonction
aléatoire idéale serait une fonction qui retourne des valeurs rapprochées l’une de l’autre quand on lui
fourni en entrée des valeurs proches, pour éviter les trop grand écarts qui donneraient une appararence
moins naturelle.

Nous utiliserons l’algorithme du bruit de perlin, idéal pour notre situation.

Premièrement un peu de lecture pour introduire le sujet :

Un article écrit par Notch, le créateur de minecraft (Terrain generation, Part 1) : https://n0tch-blog-blog.
tumblr.com/post/4231184692/terrain-generation-part-1

Perlin Noise, de wikipedia : http://en.wikipedia.org/wiki/Perlin_noise

Le code est fourni dans les fichiers perlin.cpp et perlin.h. Note : Ce code a été fait par le créateur de
l’algorithme lui-même (Ken Perlin)

Vous devez utiliser ce code pour générer le terrain, et vous devrez y ajouter votre touche personnelle pour
ajouter des mineraux si désiré, ajouter des arbres, cavernes, etc. Pour ce travail vous devez générer
un terrain montagneux comportant au minimum 3 types de blocs différents. La génération
du terrain doit se faire dans le constructeur du chunk.

Important : Si le joueur modifie un chunk (en ajoutant ou enlevant un bloc) il ne faut pas oublier de
sauvegarder le chunk modifié sur le disque quand il se fait détruire (dans son destructeur...) pour s’assurer
que ses changements sont préservés. Une étape de plus s’ajoute à la création d’un chunk : vous devez
vérifier si le chunk a déjà été sauvegardé, et si oui, le charger du disque plutôt que de le regénérer. Pour
des raisons d’espace de stockage et d’efficacité, il ne faut pas sauvegarder tout les chunks,
seulement ceux ayant subit des modifications.

Voici un exemple d’utilisation du code de perlin :

Listing 1 – Création d’un objet de type Perlin

// The first parameter is the number of octaves , this is how noisy or smooth the function is. This is valid between 1 and 16. A value of

4 to 8 octaves produces fairly conventional noise results. The second parameter is the noise frequency. Values betwen 1 and 8 are

reasonable here. You can try sampling the data and plotting it to the screen to see what numbers you like. The last parameter is

the amplitude. Setting this to a value of 1 will return randomized samples between -1 and +1. The last parameter is the random

number seed.

Perlin perlin (16,6,1,95);

Listing 2 – Création du terrain dans le constructeur de Chunk

for(int x = 0; x < CHUNK_SIZE_X; ++x)

{

for(int z = 0; z < CHUNK_SIZE_Z; ++z)

{

// La méthode Get accepte deux paramêtre (coordonnée en X et Z) et retourne une valeur qui respecte

// les valeurs utilisées lors de la création de l’objet Perlin

// La valeur retournée est entre -1 et 1

float val = perlin.Get((float)(m_posX * CHUNK_SIZE_X + x) / 2000.f, (float)(m_posZ * CHUNK_SIZE_Z + z) / 2000.f);

// Utiliser val pour déterminer la hauteur du terrain à la position x,z

// Vous devez vous assurer que la hauteur ne dépasse pas CHUNK_SIZE_Y

// Remplir les blocs du bas du terrain jusqu ’à la hauteur calculée.

// N’hésitez pas à jouer avec la valeur retournée pour obtenir un résultat qui vous semble satisfaisant

}

}

2

https://n0tch-blog-blog.tumblr.com/post/4231184692/terrain-generation-part-1
https://n0tch-blog-blog.tumblr.com/post/4231184692/terrain-generation-part-1
http://en.wikipedia.org/wiki/Perlin_noise


Au choix

Si vous aviez des rêves ou des aspirations pour votre jeu en début de session, c’est maintenant le temps
de les réaliser. Rendu à ce point dans la séquence de TP, la base du jeu est maintenant en place et il est
temps d’y ajouter des éléments qui le distinguera de celui de vos collègue et peut-être même du minecraft
original.

Vous devez implémenter au minimum un élément au choix parmis la liste suivante. Il est possible de
choisir un élément qui ne fait pas partie de cette liste (mais d’ampleur équivalente), sur approbation
de l’enseignant.

C’est probablement la partie la plus complexe du cours, et il est normal que vous ayez à fouiller par
vous-même pour trouver de l’information ou à discuter avec vos collègues et enseignant pour arriver à un
bon résultat. N’hésitez pas à mettre en pratique ce que vous avez appris jusqu’à maintenant.

1. Monde infini, il doit être possible de se promener et le jeu doit charger et décharger les chunks
visible dynamiquement

2. Inventaire et capacité de ’crafter’ des objets

3. Jeu en réseau (gérer au minimum le déplacement de deux joueurs simultanés)

4. Gestion de l’éclairage

5. Système de menu hiérarchique permettant de configurer certains éléments du jeu, de quitter, etc

6. Monstres et combat avec ceux-ci (apparence des monstres et système de combat au choix)

7. Chargement et mise à jour des Chunk en arrière plan dans un thread séparé (en utilisant les
threads de SFML)

Présentation de votre projet

Vous devrez présenter votre jeu à vos collègues de classe (correspond au cours de la date de remise). Ce
travail doit être terminé avant la présentation, portez une attention particulière à la date de
remise sur vortex. Cette présentation se veut amicale et sans stress, c’est le moment de partager votre
réalisation de la session. Pensez à préparer une petite démo vous vous pourrez faire en démonstration en
avant pour mettre en valeur les caractéristiques de votre jeu.

Tests

Aucuns tests unitaires ne sont à réaliser pour ce travail, mais vous devez vous assurer que votre jeu
respecte au minimum ce qui est demandé dans cet énoncé.

Points bonus

Impressionnez-moi ! Des points bonus seront accordés pour les extra de votre cru que vous rajouterez à
ce TP. Veuillez décrire dans le fichier texte de la remise les extras que vous avez fait et que vous voulez
que je considère pour les points bonus. Rendu à ce stade du projet, et ce jusqu’à la fin, vous êtes
encouragés à personnaliser votre jeu en y ajoutant votre touche personnelle.

Remise

A remettre sur Vortex :

1. Un fichier texte (.txt) contenant le hash sha1 (exemple : 8fea0e32a53c59eac95c157fa060e112cf88b7a0)
du dernier commit que vous voulez que je corrige. Assurez-vous d’avoir fait un push sur le serveur
pour que je puisse voir votre dernière version. Ne pas remettre votre projet directement sur
vortex !

3


