
Travail pratique #01

Objectifs

— Pratiquer l’allocation et la libération de mémoire dynamique
— Créer une structure de donnée en mémoire
— Révision des notions de pointeurs
— Utilisation de template pour rendre le code générique
— Compilation multi-plateforme

Règles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp

2. N’oubliez pas les ”include guard”

3. Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc

4. Les règles de l’encapsulation doivent être respectées au maximum, seulement ce qui doit absolument
être public peut l’être

5. Veuillez commenter votre code intelligemment

Instructions

Vous devez implémenter en c++ une application console comportant une classe conteneur de type arbre
binaire de recherche (ABR, BST). Votre classe doit être capable de contenir n’importe quel type de
donnée (template).

Un arbre binaire de recherche comporte les caractéristiques suivantes :

1. Il ne peut contenir de doublons

2. Les données sont arrangées sous forme d’arbre. Cet arbre contient un noeud principal nommé
noeud racine sous lequel tout les autres noeuds sont placés en hiérarchie.

3. Chaque noeud (incluant le noeud racine) peut avoir maximum 2 noeuds enfants (0, 1 ou 2 enfants
pour chaque noeud)

4. Pour chacun des noeuds, tout noeud à sa gauche a une valeur plus petite que la sienne (numériquement
ou alphabétiquement)

5. Pour chacun des noeuds, tout noeud à sa droite a une valeur plus grande que la sienne (numériquement
ou alphabétiquement)

1



6. Les opérations d’ajout, supression et de recherche (méthodes Ajouter, Enlever et Contient)
doivent se faire de façon optimale et doivent avoir une complexité algorithmique de O(logn)

Il est fortement suggéré de consulter la page suivante : https://msdn.microsoft.com/en-us/library/
ms379572(v=vs.80).aspx

Avant la remise, assurez-vous de respecter les consignes suivantes :

1. Votre classe doit s’appeler obligatoirement ArbreBinaire

2. Votre classe ArbreBinaire doit être un template

3. Vous devez programmer vous-même le code qui manipule l’arbre binaire de recherche. Vous ne
pouvez pas utiliser des classes conteneurs qui existent déjà dans la librairie standard c++ (comme
std::set, etc).

4. Votre code doit compiler en Windows (Visual Studio 2019) et sous linux (g++) sans modifica-
tions.

(a) g++ *.cpp -o tp01

5. Attention de ne pas causer de fuites mémoires (tout ce qui est alloué doit être libéré dans le
destructeur).

6. Votre code doit être robuste et être capable de faire face aux imprévus sans planter (exemple :
enlever un item inexistant, essayer d’ajouter un item déjà présent, afficher un arbre vide, etc)

7. Votre code doit toujours être le plus optimal possible (usage judicieux de la mémoire et du cpu)

Voici les méthodes que vous devez implémenter au minimum dans votre classe ArbreBinaire :

Listing 1 – Classe ArbreBinaire

template <class T>

class ArbreBinaire

{

public:

ArbreBinaire (); // Construit un arbre vide

~ArbreBinaire (); // Libere toute la memoire allouée

void Ajouter(const T& valeur); // Ajouter un item

void Enlever(const T& valeur); // Enlever un item

bool Contient(const T& valeur) const; // Retourne vrai si l’arbre contient l’item recherché

int Nombre () const; // Retourne le nombre d’items dans l’arbre

T Minimum () const; // Retourne la plus petite valeur

T Maximum () const; // Retourne la plus grande valeur

void AfficherCroissant () const; // Affiche le contenu de l’arbre en ordre croissant (avec un espace entre chaque item)

void AfficherDecroissant () const; // Affiche le contenu de l’arbre en ordre décroissant (avec un espace entre chaque item)

private:

// ...

};

Points bonus

Cette section est facultative mais donne la possibilité de recevoir des points bonus sur ce travail (pour
récupérer des points perdus si c’est le cas) si elle est terminée en temps. Dans tout les cas il est fortement
recommandé de la faire.

Veuillez, pour chacune des fonctions suivante, créer le code qui effectue l’opération demandée en com-
mentaire (on assume que le type int a une taille de 32 bit) :

Listing 2 – Code à implémenter

int CompterBit1(unsigned int valeur)

{

// Retourne le nombre de bit setté à 1 dans la valeur reçue

}

bool EstPair(unsigned int valeur)

{

// Retourne true si la valeur reçue est paire , false sinon

// Vous devez utiliser l’opérateur ET binaire (&)

}

bool EstPuissanceDeux(unsigned int valeur)

{

2

https://msdn.microsoft.com/en-us/library/ms379572(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/ms379572(v=vs.80).aspx


// Retourne true si la valeur reçue est une puissance de 2, false sinon

}

unsigned int InverseBit(unsigned int valeur)

{

// Inverse l’ordre des bit de la valeur reçue et retourne le résultat

// Le premier bit devient le dernier , le deuxième devient l’avant dernier , etc

// Exemple 1: 01001011 -> 11010010

// Exemple 2: 10101010 -> 01010101

// Exemple 3: 11100110 -> 01100111

}

Remise

Pour ce travail vous devez me remettre sur vortex les fichiers source seulement (*.cpp, *.h).

3


