Travail pratique #02 - Algorithmes de compression

I'M COMPRESS

YO0 boma?

Objectifs

— Manipulation de structures de données en mémoire
— Développer des algorithmes de compression
— Utiliser les conteneurs standard (STL)

Regles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp

N’oubliez pas les ”include guard”

Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc
Veuillez commenter votre code intelligemment

Votre code doit étre de qualité exemplaire

AN o

Votre code doit compiler sans erreurs pour étre corrigé

Instructions

Ce travail est a réaliser en C++, avec une application de type console.

Vous devez implémenter deux algorithmes de compression tres répandus : RLE et huffman. En vous
inspirant des vidéos suggérées, des explications et/ou exemples de code donnés en classe, ou de toute autre
source de documentation pertinente, veuillez programmer vous-méme la compression et la décompression

pour chacun des 2 algorithmes.

Vos classes doivent fournir les méthodes publiques suivantes, et ce sont celles-ci qui seront appelées pour

la correction :

class RLE

public:
// Accepte des données non-compressées en paramétre et retourne les données compressées
std::string Compresser(const std::string& data);

// Accepte des données compressées en paramétre et retourne les données décompressées
std::string Decompresser (const std::string& data);

private:

/7 ...




Listing 2 — Classe Huffman

class Huffman

public:
// Accepte des données non-compressées en paramdtre et retourne les données compressées
std::string Compresser(const std::string& data);

// Accepte des données compressées en paramdtre et retourne les données décompressées
std::string Decompresser (const std::string& data);

private:

/7 ...

Les classes acceptent comme parametres et retournent des std: :string, un objet std: :string pouvant
contenir n’importe quel type d’octets (pas juste des caractéres affichable).

Veuillez tester vos deux algorithmes de compression avec diverses données pour vous faire une idée de
l'usage qui peut en étre fait, et dans quels cas il est préférable de choisir I'un par rapport a I'autre.

Assurez vous que votre algorithme est fonctionnel. Lorsque vous compressez des données, vous devez
valider que la décompression vous redonne les données originales sans pertes.

Votre code doit compiler sous windows et linux sans modifications.

Important : Veuillez tester vos 2 algorithmes avec 11 types de fichiers (ces fichers sont fournis sur vortex)
et consigner vos résultats dans le fichier observations.zls (fourni lui aussi sur vortex) :

1. Un texte en langue francaise (01.txt)

Un document HTML (02.html)

Une image BMP (03.bmp)

Une image JPG (04.jpg)

Un fichier exécutable windows (05.exe)

Un fichier déja compressé au format ZIP (06.zip)

Un chunk de minecraft (07.bin)

Un fichier de 10MB contenant juste des zéros (08.bin)

Un fichier de 10MB contenant des octets aléatoires (09.bin)

Un fichier contenant des séquences de chiffres (0..9) de longueur aléatoire, maximum 20 de long
(10.bin)

11. Un fichier avec le méme type de séquences que le 10.bin, mais de longueur maximale de 500 (11.bin)

© ® NN

,_.
e

Pour charger le contenu de vos fichiers en mémoire, cette fonction pourrait vous étre utile :

Listing 3 — Fonction LoadFile

std::string LoadFile(const std::string& filename)
std::ifstream f(filename.c_str(), std::ios::binary);
if (1f.is_open())
return "";
f.seekg(0, std::ios::end);
unsigned int len = f.tellg();
f.seekg(0, std::ios::beg);

char* tmp = new char[len];

f.read(tmp, len);
f.close();

std::string buffer (tmp, len);
delete [] tmp;

return buffer;

Exemple de résultat attendu

A titre indicatif seulement, voici le résultat attendu. Il est normal que vos chiffres divergent légérement
des miens, mais ils devraient étre quand méme tres pres. Le temps d’exécution est aussi a titre indicatif,



et correspond a l’exécution en mode release d’un test compressant 1’ensemble des fichiers de tests avec
RLE et huffman. Selon la puissance de votre processeur, il se peut que cela varie un peu, mais je m’attend
a avoir une performance dans le méme ordre de grandeur.

Compress

76!
47978
42273

178969

*Hint : Il est beaucoup plus rapide reconstruire ’arbre a partir du dictionnaire et de se servir de l’arbre
pour décompresser que d’utiliser directement le dictionnaire.

Correction

Pour la correction, vous devez vous assurer que lorsque j’utilise votre fonction Compresser et que j'obtiens
un résultat compressé, la décompression de celui-ci avec votre méthode Décompresser donne exactement

le résultat original.

data == Decompresser (Compresser(data))
Références
RLE : https://www.youtube.com/watch?v=JtoziXq62XA

Huffman : https://www.youtube.com/watch?v=apcCVEXfcqE

Remise

1. Votre fichier observations.xls

2. Votre code source (les fichiers *.cpp et *.h seulement)



