Travail pratique #03

Objectifs

— Expérimenter la multiprogrammation dans un cas d’utilisation réel

— Utiliser le multi-thread pour obtenir un gain de performance

— Convertir un programme standard pour le rendre parallele

— Utiliser les primitives de synchronisation

— Tirer profit de la liaison dynamique pour favoriser I’extensibilité d’un programme

Regles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp

N’oubliez pas les ”include guard”

Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc
Veuillez commenter votre code intelligemment

Votre code doit étre de qualité exemplaire

IR

Votre code doit compiler sans erreurs pour étre corrigé

Remarques

ATTENTION : En aucunes circonstances ce travail ne doit étre utilisé et/ou testé sur de vrais sites
web. Un environnement de test vous est fourni et il est fortement recommandé de déconnecter votre
ordinateur d’internet lors de vos tests pour éviter qu'une erreur ne se produise et aie des répercussions
indésirables.

De plus, puisque votre dévoué prof aime bien sa job et espere la conserver le plus longtemps possible,
il serait judicieux de travailler d’un endroit ou il est impossible pour votre ordinateur de communiquer
avec le monde extérieur, et ce peu importe le moyen de communication possible (wifi, internet, pigeon
voyageur, télégraphe, signaux de fumée). 1’idéal serait de travailler dans une cage de faraday, construite
dans une caverne, dans un pays du tier-monde (ou & St-Marcel). Méfiez-vous de la Pbzzuffvba Fpbynver
qr Fg-Ulnpvagur

(SVP lire I’ensemble de ce document avant de commencer le travail)

Programme de base fourni

Un programme de base (nommé crawler) est fourni avec ce travail. Il s’agit d’un robot dont la principale
tache est de parcourir automatiquement des pages web pour en extraire de I'information. Le programme
lit une liste d’urls & partir d’un fichier texte (urls.txt) et pour chacune d’entre elles il télécharge le code
HTML et extrait les courriels trouvés (liens de type mailto).



Environnement de test

Pour tester votre programme avec le jeu de test fourni (répertoire tests) vous devez démarrer exécutable
nommé httpd.exe contenu dans ce répertoire. Celui-ci crée un serveur web local qui écoute sur le port
8000 et qui permet d’accéder aux pages web contenues dans le répertoire tests. Bien qu'un fichier urls.tzt
est déja fourni avec le projet, d’autres sont aussi fournis avec les jeux de tests. Au besoin, vous pouvez
tester avec n’importe quel sous-ensemble des tests en utilisant les urls de votre choix parmis celles fournies
dans ce répertoire.

L’environnement de test fourni essaie de recréer le plus fidelement possible les conditions réelles d’un
crawler parcourant internet, incluant la latence réseau, la conformance au protocole HT'TP, le type et le
format des documents retournés, etc. Si votre crawler fonctionne bien avec les jeux de tests fournis, il est
trés raisonnable de penser qu’il fonctionnerait aussi bien s’il utilisait une liste d’url provenant de vrais
site web dans le fichier urls.tzt.

C’est la premiere fois que ce travail est fait dans un environnement de test plutét que sur
de vrais sites web, en conséquences il se peut qu’il y aie des ajustements a faire en cours
de travail et que de nouveaux jeux de tests vous soient fournis si nécessaire.

Instructions

Le programme fourni a deux lacunes :

1. On aimerait que le programme ne récupere pas seulement la liste des courriels contenus dans
chaque page, mais qu’il puisse étre possible d’ajouter des fonctionnalités pour récupérer d’autres
informations a l'aide de plugins. Encore mieux, on aimerait étre capable d’ajouter des plugins
sans avoir a recompiler le crawler, simplement en déposant une ou des DLLs dans le répertoire du
programme.

2. Vu qu’une seule page est téléchargée a la fois, ce n’est pas optimal et plusieurs facteurs (le temps de
latence du réseau, le délais de réponse du serveur distant, etc) peuvent causer des ralentissements.

Amélioration 1 : Systeme de plugins

Votre programme doit pouvoir charger et gérer des plugins qui auront la tache de traiter 'information
téléchargée. Chaque fois que le contenu HTML d’une page web est téléchargé, le contenu de la page (code
HTML stocké dans un std :: string) doit étre envoyé a chacun des plugins. La fagon de procéder et la
logique du gestionnaire de plugins sera tres semblable a la démonstration faite en classe et il est suggéré
de vous en inspirer.

Voici la classe de base a partir de laquelle les plugins devront construire un objet et en donner un pointeur
lorsque demandé (déja fournie dans le projet de base) :

Listing 1 — Classe abstraite PageHandler

class PageHandler

public:
virtual ~PageHandler () {}

// Méthode appelée pour chaque page, le contenu html de la page est passé en paramamétre
virtual void HandlePage(std::string& html) = 0;

// AfficherResultat sera appelée une seule fois lorsque le crawler aura terminé de s’exécuter et affichera 1’information demandée
virtual void AfficherResultat() = 0;

Chaque plugin devra exporter une fonction nommée GetHandler non-décorée (extern ”C”) qui retournera
un pointeur vers une instance d’un objet ayant comme type parent PageHandler :



Listing 2 — Fonction exportée GetHandler

extern "C"
__declspec(dllexport) PageHandler* GetHandler ()
{
// & compléter

}
}

Une fois votre systéme de plugins en place, veuillez créer les deux plugins (projet de type DLL dans la
méme solution que le crawler) suivants :

1. Un plugin qui extrait toutes les adresses courriels présentes dans chaque page et les conserve en
mémoire. Une fois que le crawler aura terminé de s’exécuter, la méthode AfficherResultat du plugin
sera appelée et devra afficher la liste des courriels uniques récupérés (un par ligne) suivi d’une
ligne contenant le nombre total de courriels uniques récupérés. Veuillez utiliser (et enlever) le
code qui fait déja la majeure partie de plugin du crawler et le déplacer dans le plugin.

2. Un plugin qui extrait tous les titres principaux de niveau 1 de chaque page (texte entre balises
HTML h1). La méthode AfficherResultat de votre plugin devra afficher tous les titres (incluant les
doublons) trouvés, un par ligne, suivi d’une ligne qui indique le nombre de titre trouvés.

Il est important que les plugins n’affichent rien en console, sauf lorsque leur méthode AfficherResultat
sera appelée.

Comme dans la démonstration faite en classe, votre crawler doit charger automatiquement au démarrage
toute DLL qui se trouve dans le méme répertoire que ’exécutable et I'utiliser comme un plugin. Outre
les 2 plugins demandés, n’importe qui devrait pouvoir ajouter un plugin sous forme de DLL qui respecte
les contraintes demandées et celui-ci devrait étre utilisé pour ajouter des fonctionnalités supplémentaires
au besoin sans que cela n’implique de modification au code de votre crawler et une recompilation.

Veuillez conserver 'affichage en console du programme original lorsque possible, plus particulierement la
séquence de points qui s’affichent pour donner un apergu de la vitesse de traitement

Amélioration 2 : traitement paralléle (multi-thread)

En continuant avec le programme que vous avez amélioré de la section précédente, vous
devez le rendre plus rapide en respectant les regles suivantes :

1. Vous ne devez pas changer 'affichage du programme. Suite a vos optimisations, le seul changement
apparent sera la vitesse d’exécution. Les différentes informations (points, liste de email, nombre de
email, liste de titres, nombre de titre, etc) doivent étre affichées dans le méme ordre (il est normal
que les emails ou les titres soient dans un ordre différent par contre).

2. Vous devez modifier le programme pour qu’il utilise 20 threads.
3. Vous devez diviser le nombre d’url a traiter le plus également possible entre les threads.

4. Vous devez protéger I'acces concurrent a la liste de courriels ainsi qu’a toute autre variable utilisée
par plus d'un thread a l’aide d’'un mutex.

5. Lorsque la liste des urls a parcourir est vide, chaque thread doit s’arréter proprement. Le pro-
gramme doit ensuite attendre qu’ils soient tous terminés avant d’afficher la liste des courriels et le
temps d’exécution.

6. Votre code doit étre robuste et ne doit planter sous aucunes considérations. Vous pouvez assumer
que le fichier durls (urls.tzt) sera toujours valide.

7. Votre crawler doit s’auto-nourrir. Vous devez trouver et extraire tout les liens contenus dans
chaque pages (les balises a href="...”) pour les ajouter & la liste des adresses & traiter.

8. Vous ne devez pas parcourir plus d’une fois la méme url.



Remise

Vous devez me remettre sur vortex votre solution Visual studio complete une fois la solution nettoyée :
1. Menu Générer, Nettoyer la solution
2. Effacer manuellement le répertoire .vs et les autres fichiers inutiles

3. Ne pas me remettre de jeux de tests



