Travail pratique #04

-

Network
sockets?!

Objectifs

— Expérimenter avec la communication de deux programmes par le réseau
— Utiliser le protocole UDP

— Utiliser une API de programmation bas-niveau (winsock)

— Traitement de commande a distance

— Utilisation d’appels systémes pour aller chercher des informations utiles
— Utiliser les pipe pour récupérer la sortie console d’'un programme

Objectifs facultatifs

Pour ceux qui auront fait le bonus :
— Se familiariser avec 'utilisation d’'un Makefile sous linux

Regles importantes

1. Chaque classe doit avoir son propre fichier .h et .cpp

. N’oubliez pas les "include guard”

. Prenez grand soin de respecter la casse pour les noms de classe, méthode, etc
. Veuillez commenter votre code intelligemment

. Votre code doit étre de qualité exemplaire

S O W N

. Votre code doit compiler sans erreurs pour étre corrigé

Instructions

(SVP lire I’ensemble de ce document avant de commencer le travail)

Vous devez implémenter une application serveur qui écoute sur un port UDP et répond aux demandes
qui lui sont faite. Le serveur doit pouvoir répondre & un client (qui est fourni) peu importe qu’il fasse ses
demandes du méme ordinateur (127.0.0.1) ou d’un ordinateur distant relié par un réseau IP. Vous pouvez
vous inspirer de la démonstration faite en classe.

Un client tres rudimentaire est fourni avec 1’énoncé de ce travail pour que vous puissiez tester votre
serveur, il est fortement suggéré de vous en créer un vous-méme pour tester votre programme (et surtout
tester les cas limites). Vous ne devez pas me le remettre.



Votre application serveur doit écouter sur le port 6666. Chaque commande regue est en minuscule, est
obligatoirement suivit d’un espace et peut optionnellement étre suivit par d’autre texte faisant office
de parametres.

Votre serveur doit étre capable de recevoir plus d'une commande successive sans avoir a le redémarrer
chaque fois.

Voici une description des commandes que votre serveur doit gérer, et pour chacune d’elle un exemple
de réponse (attention! il est possible que certaines réponses soient différentes dépendamment de votre
environnement) :

Commande ping

Commande du client: ping
Réponse du serveur: pong

Commande echo
Le serveur renvoie exactement ce qui suis la commande echo.

Commande du client: echo Voici un message
Réponse du serveur: Voici un message

Commande date

Retourne la date courante sous forme de chaine de caractere (le format dépend de la langue de votre
windows). Pour y arriver vous pouvez utiliser les fonctions time et ctime définies dans time.h.

Commande du client: date
Réponse du serveur: Mon Apr 15 23:50:47 2013

Commande usager
Cette commande retourne le nom d’usager courant (API a utiliser sous Windows : GetUserName)

Commande du client: usager
Réponse du serveur: aouellet

Commande exec

Cette commande fait en sorte que le serveur exécute la commande qui suit le mot clef exec. Le serveur
exécute la commande et retourne la sortie console (les 10 premiéres lignes, jusqu’a concurrence de 300
octets maximum). Si la commande n’affiche rien en console, vous devez retourner ”OK” au client.

Hint : popen, pclose, fread

Commande du client: exec ver
Réponse du serveur: Microsoft Windows [Version 10.0.10586]

Commande bye

Cette commande ne retourne rien, mais ferme la connection proprement et provoque la fermeture de votre
serveur (exit).

Commande du client: bye
Réponse du serveur: (aucune)



Attention de respecter les majuscules/minuscules.

Votre programme doit étre robuste et étre capable de gérer les situations imprévues qui peuvent survenir
(commande vide, commande trop longue, commande inconnue, etc). Lorsque ce genre d’erreur survient,
vous devez uniquement retourner au client le mot ERREUR en majuscule, et continuer a accepter d’autres
commandes.

Fonctionnement sous Linux

L’utilisation de sockets sous Linux et sous Windows est tres semblable, mais il y a quand méme certains
détails a faire attention.

Vous devez rendre votre code portable (en utilisant des #ifdef / #endif au besoin et/ou d’autres astuces
pertinentes) pour qu’il compile et fonctionne sans modifications sous Linux aussi (en le compilant
avec g++ (et non mingw) pour générer un exécutable natif).

Vous devez vous renseigner et chercher I'information nécessaire par vous-méme pour réaliser cette section.
MSDN et les man pages de linux vous seront utiles. Assurez-vous de tester votre programme entre les 2
systémes d’exploitation (serveur sous linux et client sous windows par exemple).

Bonus

Cette section est facultative mais donne la possibilité de recevoir des points bonus si elle est terminée en
temps et avec succes.

Recherchez de 'information sur la création et 'utilisation d’un Makefile sous linux. Vous devez créer un
fichier Makefile qui permettra de compiler votre application en respectant les dépendances d’include.

11 doit étre possible de faire les commandes suivantes :

make : compile votre programme en respectant les dépendances, en compilant toujours le minimum
selon les fichiers sources qui ont été modifiés (ou non). Par exemple, I'appel de la commande make deux
fois successivement doit provoquer la compilation la premiere fois, et ne rien faire la seconde fois puisque
les fichiers sources n’ont pas changé entre les 2 appels.

make clean : nettoie votre répertoire, en supprimant si applicable les fichiers objets intermédiaires, ainsi
que votre fichier exécutable si il existe.

Veuillez placer votre fichier Makefile dans le méme répertoire que vos fichiers de code source.

Remise

Vous devez me remettre sur vortex votre solution wvisual studio complete une fois la solution nettoyée :
1. Menu Générer, Nettoyer la solution

2. Effacer manuellement les autres fichiers inutiles (ne pas oublier le répertoire .vs)



